

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number 73486 Publications Code WFM01_01_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(NB specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

- Factorisation
 - $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

- Formula
 - Attempt to use the correct formula (with values for *a*, *b*and *c*).
- Completing the square

• Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

- Differentiation
 - Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)
- Integration
 - Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first. Normal marking procedure is as follows:

- Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.
- Where the formula is not quoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number	Scheme	Notes	Marks
1	$\sum_{r=1}^{n} r^{2} (r+2) = \sum_{r=1}^{n} r^{3} + 2 \sum_{r=1}^{n} r^{2} \text{ or } \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} 2r^{2}$	Correct split with 2 summations. Could be implied by correct work. Condone missing or incorrect summation limits.	B1
	$=\frac{1}{4}n^{2}(n+1)^{2}+2\times\frac{1}{6}n(n+1)(2n+1)$	Attempts to use both standard results and obtains an expression of the form $pn^2(n+1)^2 + qn(n+1)(2n+1)$ $p, q \neq 0$ Could be implied by immediate expansion	M1
	$= \frac{1}{12}n(n+1)[3n(n+1)+4(2n+1)]$ $= \frac{1}{12}n(n+1)(3n^2+11n+4)$	dM1: Attempts factorisation to obtain $\frac{1}{12}n(n+1)(an^{2}+bn+c)$ $a,b,c \neq 0$. Condone poor algebra. Could follow cubic or quartic. Allow a consistent $a =, b =,$ c = if quadratic never seen simplified Requires previous M mark. A1: Correct expression or a = 3, b = 11, c = 4 Allow e.g., $\frac{1}{12}n(n+1)$ written as $\frac{n}{12}(n+1)$	d M1 A1
	Note: $n(n+1)(3n^2+11n+4) =$	$=3n^4+14n^{\overline{3}}+15n^2+4n$	Total 4

Question Number	Scheme	Notes	Marks
2	$2x^4 - 8x^3 + 29x^2 - 12x + 39 = 0, x = 2 + 3i$		
	Condone work in e.g	., z throughout	
(a)	2–3i	Correct conjugate	B1
(b)	$\frac{(x - (2 - 3i))(x - (2 + 3i))}{\text{or } (x - 2 + 3i)(x - 2 - 3i)} = \dots \{x^2 - 4x + 13\}$	Attempts to multiply the two correct factors to obtain a 3 term quadratic with real coefficients. Could use $(x-2)^2 = (\pm 3i)^2$ or $x^2 - 2ax + a^2 + b^2$ with $a = 2, b = \pm 3$	
	sum = 4, product = 13 $\Rightarrow x^2 \pm 4x \pm 13 \text{ or } x^2 \pm 13x \pm 4$ or $x^2 - (2 + 3i + 2 - 3i)x + (2 + 3i)(2 - 3i)$ $\Rightarrow \dots \{x^2 - 4x + 13\}$	Or uses the correct sum and product of the roots to obtain an expression of the form shown (must be some minimal working – but if just a quadratic is given the next 2 marks are available) or $x^2 - (\alpha + \beta)x + \alpha\beta$ to obtain a 3 term quadratic with real coefficients.	M1
	$2x^{4} - 8x^{3} + 29x^{2} - 12x + 39 \Longrightarrow (x^{2} - 4x + 13)(2x^{2} + 3)$	Uses their 2 or 3 term quadratic factor with real coefficients to obtain a second 2 or 3 term quadratic of the form $2x^2 +$ by long division, equating coefficients or inspection. Ignore any remainder from long division. Can follow M0	M1
	$2x^{2} + 3(=0) \Rightarrow$ $x = \pm \frac{\sqrt{6}}{2}i \text{ or } \pm i\sqrt{\frac{3}{2}} \text{ or } \pm \frac{\sqrt{3}}{\sqrt{2}}i \text{ or } \sqrt{1.5}i$ $\sqrt{1.5i} \text{ is M0}$ $1.2247i \text{ is M1 A0}$	 dM1: Solves their second quadratic factor = 0. If 2 term must get one correct non-zero root. (Usual rules if 3TQ and one correct root if no working) Could be inexact. Requires previous method mark. A1: Both correct exact roots with "i" Requires all previous marks. 	d M1 A1
	Solving by calculator, sometimes followed b $f(x) = \left(x^2 - 4x + 13\right)\left(x^2 + \frac{3}{2}\right)$ is first M1 only	by attempts to reconstruct factors. e.g., and working for the 3TQ must be seen	(4)
(c)	x x x x	Allow ft on their answers to (b) if they are of the form $\pm ki$ or $\pm k\sqrt{-1}$, $k \neq 0$ regardless of how they were obtained 1st B1: One of the two pairs of roots in correct positions 2nd B1: Both pairs of roots in correct positions and correct relative to each other for their k Allow any suitable indication of the roots such as vectors. Ignore all labelling and scaling but each pair should be reasonably symmetric in <i>x</i> -axis for any marks (for each pair -distance of one to <i>x</i> -axis not less than $\frac{1}{2}$ of the other)	B1 B1 (ft on (b))
			(2) Total 7
L			

Question Number	Scheme	Notes	Marks
3(a)	$y = 9x^{-1} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -9x^{-2} \left\{ = -\frac{9}{\left(3t\right)^2} \right\}$	Any correct expression for $\frac{dy}{dx}$	
	or $xy = 9 \Rightarrow x \frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} \left\{ = -\frac{\frac{3}{t}}{3t} \right\}$	but allow e.g., $\frac{dx}{dy} = -9y^{-2}$ Calculus must be seen so there is no	B1
	or $x = 3t, y = 3t^{-1} \Rightarrow \frac{dx}{dt} = 3, \frac{dy}{dt} = -3t^{-2} \Rightarrow \frac{dy}{dx} = \frac{-3t^{-2}}{3}$	credit for just a statement e.g., $m_T = -\frac{1}{t^2}$	
	e.g., $m_N = \frac{(3t)^2}{9}$ or $\frac{3t}{\frac{3}{t}}$ or $\frac{3}{3t^{-2}} = t^2$	Uses the perpendicular gradient rule to obtain the gradient of the normal in terms of t correct for their m_T Implied by correct use of $-\frac{dx}{dy}$	M1
	$y - \frac{3}{t} = t^2 \left(x - 3t \right) \text{ or } \frac{3}{t} = t^2 \left(3t \right) + c \Longrightarrow c = \dots$ $\left\{ c = \frac{3}{t} - 3t^3 \right\}$	Applies straight line method correctly with their normal (changed) gradient in terms of t. If using $y = mx + c$ coordinates must be correctly placed and $c =$ reached	M1
	$ty - t^3x = 3 - 3t^4$ Intermediate step not required. Allow recovery from a slip.	Correct equation or $f(t)$. Must be seen in (a). Accept equivalents for $f(t)$ e.g., $3(1-t^4), -3(t^4-1)$	A1
	Allow work with $xy = c^2$ but the fination No calculus scores a maximum of 0111 if	al mark requires use of $c^2 = 9$ m_T is stated and 0011 if m_N is stated	(4)
(b)	$xy = 9, \ 2y - 8x = 3 - 3 \times 16$	Uses $t = 2$ in their $ty - t^3 x = f(t) \neq 0$	
	e.g., $\Rightarrow y = 4x - \frac{45}{2}$ or $x = \frac{45}{8} + \frac{y}{4}$ $\Rightarrow x\left(4x - \frac{45}{2}\right) = 9$ or $y\left(\frac{45}{8} + \frac{y}{4}\right) = 9$	and the equation of <i>H</i> to obtain an unsimplified three term quadratic equation in <i>x</i> or <i>y</i> (no variables in denominators). Only allow $f(t) = \frac{9}{t}$ if stated first	M1
	$8x^{2} - 45x - 18 = 0 \text{ or } 2y^{2} + 45y - 72 = 0$ $\{\Rightarrow (8x+3)(x-6) = 0 \text{ or } (2y-3)(y+24) = 0\}$ $\Rightarrow x = \dots \{-\frac{3}{8}, 6\} \text{ or } y = \dots \{\frac{3}{2}, -24\}$	Solves their 3TQ to find a value for x or y – apply usual rules. One root correct if no working. Can award for P provided it has come from quadratic. Requires previous method mark.	d M1
	$\left(-\frac{3}{8}, -24\right)$ or $\left(-0.375, -24\right)$	Correct exact coordinates in simplest form from correct work. Allow $x =, y =$ Ignore $(6, \frac{3}{2})$ but A0 for any other point shown or incorrect <i>x</i> or <i>y</i> value.	A1
	Solving in terms of t: M1: \Rightarrow Unsimplified 3 M1: Solves e.g, $x = \frac{-\frac{3}{t} + 3t^3 \pm \sqrt{\left(\frac{3}{t} - 3t^3\right)^2 + 36t^2}}{2t^2}$	TQ e.g., $t^2 x^2 + \left(\frac{3}{t} - 3t^3\right) x - 9 = 0$ M1 $\left\{ \Rightarrow \left(-\frac{3}{t^3}, -3t^3\right) \right\}$ A1: $t = 2 \Rightarrow \left(-\frac{3}{8}, -24\right)$	(3)
	Correct final answer with no incorrect we	ork is 111 provided $f(t)$ was correct	Total 7

Question Number	Scheme	Notes	Marks
4	$\mathbf{A} = \begin{pmatrix} -3 & 8 \\ -3 & k \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix}$	$\mathbf{BC} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix}$	
(i)	det $\mathbf{A} = -3k - 8(-3) \{= -3k + 24\}$ Could be implied	Attempts det A and obtains $\pm 3k \pm 8(\pm 3)$ or $\pm 3k \pm 24$	M1
	$-3k + 24 = 3 \text{or} -3k + 24 = -3$ $\implies k = \dots$ May see $(-3k + 24)^2 = +9 \implies 9k^2 - 144k + 567 = 0 \implies \dots$	Equates their det A of form $ak+b$ $a, b \neq 0$ to 3 or -3 or equivalent work and solves for k (usual rules if quadratic and must use +9)	M1
	k = 7, k = 1st A1: Either correct value of k from corr 2nd A1: Both correct values of k from cor	9 ect work. Allow e.g., $\frac{-21}{-3}$ or $\frac{-27}{3}$ rect work. 7 and 9 only. No extra	A1 A1
(::)		Competencing lifed engaging for det	(4)
(11)	det B = $1 \times 3a - (-4) \times 2 \{= 3a + 8\}$	B . Could be implied	B1
	$\mathbf{B}^{-1} = \frac{1}{"3a+8"} \begin{pmatrix} 3 & 4\\ -2 & a \end{pmatrix}$	Correct B ⁻¹ with their det B . Adj(B) to be correct but allow elements to have their det B as denominators if incorporated.	M1
	$\mathbf{C} = \mathbf{B}^{-1}\mathbf{B}\mathbf{C} = \frac{1}{3a+8} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix} \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix} = \dots$	Multiplies BC by their B ⁻¹ (changed – and not just by incorporation of their determinant) the correct way round. Expect four correct elements for their	M1
	Access to this mark is allowed if there is no determinant or if $\mathbf{B}^{-1} = \det \mathbf{B} \times \operatorname{Adj}(\mathbf{B})$ used	matrices if the method is unclear. The incorrect order scores M0 even if the correct result is obtained.	
	$\mathbf{C} = \frac{1}{3a+8} \begin{pmatrix} 10 & 31 & 11 \\ a-4 & 4a-10 & 2a-2 \end{pmatrix}$ Ignore any reference to inapplicable values of a $(a \neq -\frac{8}{3})$	Correct C or equivalent with like terms collected and single fractions if necessary. e.g., $\begin{pmatrix} 10 & 31 & 11 \\ \hline 3a+8 & 3a+8 & 3a+8 \\ \hline \underline{a-4} & \underline{2(2a-5)} & \underline{2(a-1)} \\ \hline 3a+8 & 3a+8 & 3a+8 \end{pmatrix}$	A1
			(4)
Alt Sim. equations	$ \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} p & q & r \\ s & t & u \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} ap - 1 \\ 2p + 1 \\ Multiplies in the correct order to obtain \end{pmatrix} $	-4s = 2 aq - 4t = 5 ar - 4u = 1 +3s = 1 2q + 3t = 4 2r + 3u = 2 at least three correct equations	B1
	$(3a+8) p = 10 \qquad (3a+8)q = 31 \qquad (3a+8)q$ $p = \frac{10}{3a+8} \qquad q = \frac{31}{3a+8} \qquad r = \frac{1}{3a}$ $s = \frac{1}{3}\left(1 - \frac{20}{3a+8}\right) \qquad t = \frac{1}{3}\left(4 - \frac{62}{3a+8}\right) \qquad u = \frac{1}{3}\left(2 - \frac{62}{3a+8}\right) \qquad u = \frac{1}{3}\left(2 - \frac{62}{3a+8}\right)$ $s = \frac{a-4}{3a+8} \qquad t = \frac{4a-10}{3a+8} \qquad u = \frac{2a}{3a}$ $M1: \text{ Solves their equations to find expression}$ $M1: \text{ Finds expressions in terms of }$ $A1: \text{ Correct matrix - like terms column }$	$r = 11$ $\frac{1}{+8}$ $\frac{22}{3a+8} \Rightarrow \begin{pmatrix} 10 & 31 & 11 \\ 3a+8 & 3a+8 & 3a+8 \\ a-4 & 4a-10 & 2a-2 \\ \hline 3a+8 & 3a+8 & 3a+8 \end{pmatrix}$ $\frac{-2}{+8}$ ons in terms of <i>a</i> for three elements of <i>a</i> for three elements of <i>a</i> for all six elements lected and single fractions	M1 M1 A1 Total 8

Question Number	Scheme	Notes	Marks
5	Solutions that rely entirely on solving the equation are generally unlikely to score but there may be attempts which include some of the work below which can receive		
	appropriate cr	edit.	
(a)	$\alpha + \beta = 6$ $\alpha \beta = 3$	Correct sum and product. Could be implied. Allow $\frac{6}{1}$ and $\frac{3}{1}$	B1
		Multiplies $(\alpha^2 + 1)(\beta^2 + 1)$ to obtain	
	$(\alpha^2+1)(\beta^2+1) = \alpha^2\beta^2+\alpha^2+\beta^2+1$	3 or 4 terms with 3 correct. Do not condone $\alpha\beta^2$ for $(\alpha\beta)^2$ unless implied later	M1
	$=\alpha^{2}\beta^{2}+(\alpha+\beta)^{2}-2\alpha\beta+1$	Uses $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1
	$\{=3^2+6^2-2\times3+1\}$	Correct answer from correct work.	
	= 40	Use of e.g., $\alpha + \beta = -6$ is A0	A1
			(4)
(b)	Allow use of their $(\alpha^2 + 1)(\beta^2 + 1)$ which could	be from (a) or a first or reattempt in (b).	
	Numerator must be	e correct	
		Any correct expression with their	
	$ \alpha + \beta - \alpha(\beta^2 + 1) + \beta(\alpha^2 + 1) $	$(\alpha^2+1)(\beta^2+1)$ for the new sum as	D1
	$\overline{(\alpha^2+1)}^+ \overline{(\beta^2+1)}^- \overline{(\alpha^2+1)(\beta^2+1)}^+$	a single fraction (or two fractions both	ы
		Uses a correct expression with their	
	$\alpha\beta(\beta+\alpha)+(\alpha+\beta)$ "3"×"6"+"6"	$(\alpha^2 + 1)(\beta^2 + 1)$ for the new sum to	
	$= \frac{1}{(\alpha^{2}+1)(\beta^{2}+1)} = \frac{1}{40} = \frac{1}{40}$	obtain a correct numerical expression with their denominator, $\alpha + \beta \& \alpha \beta$	M1
		and achieves a value.	
		Uses a correct expression with their	
	$\frac{\alpha\beta}{\alpha\beta} = \frac{"3"}{\alpha\beta}$	$(\alpha^2 + 1)(\beta^2 + 1)$ for the new product	M1
	" $(\alpha^2 + 1)(\beta^2 + 1)$ " "40"	to obtain a correct value with their denominator and $\alpha\beta$	1011
		One value for new sum or new	
	new sum = $\frac{24}{4} = \frac{3}{4}$ or new product = $\frac{3}{4}$	product correct. Any equivalent	A1
	$40 \begin{bmatrix} 5 \end{bmatrix}$ or hereproduce 40	fractions. Not ft. Requires	211
		appropriate previous M mark.	
		$r^2 = (sum of roots) r + (product of roots)$	
	$_{2}$ 24 3 (p)	or equivalent work with their new sum	2.64
	$x^{-} - \frac{1}{40}x + \frac{1}{40} \{=0\}$	and product. Condone use of a	MI
		different variable. Allow appropriate	
		values for <i>p</i> , <i>q</i> and <i>r</i>	
		Any correct equation with integer coefficients and "= 0".	
	$40x^2 - 24x + 3 = 0$	Condone use of a different variable.	A1
		Allow e.g., $p = 40$, q = 24, $r = 3$. Becauires all mortes	
		y = -24, $r = 3$. Requires an marks.	(6)
	Note that although $(\alpha^2 + 1)(\beta^2 + 1)$ may be attempted or reattempted in (b) there is no		(~)
	rote that although $(\alpha + 1)(\rho + 1)$ may be attempted of reattempted in (b) there is no credit for work in (a) that is only seen in (b)		

Question Number	Scheme	Notes	Marks
6(a)	$ z_1 + z_2 \{ = 3 + 2i + 2 + 3i = 5 + 5i \} = \sqrt{5^2 + 5^2}$	Attempts the sum (allow one slip) and uses Pythagoras correctly	M1
	$\sqrt{50}$ or $5\sqrt{2}$	Either correct exact answer	A1
	Answer only is no marks but working can	be minimal e.g., $ 5+5i = 5\sqrt{2}$	(2)
(b)	$\frac{z_2 z_3}{z_1} = \frac{(2+3i)(a+bi)}{(3+2i)} = \frac{(2+3i)(a+bi)}{(3+2i)} \times \frac{(3-2i)}{(3-2i)}$ or $\frac{z_2}{z_1} = \frac{2+3i}{3+2i} \times \frac{3-2i}{3-2i}$ or $\frac{z_3}{z_1} = \frac{a+bi}{3+2i} \times \frac{3-2i}{3-2i}$	Substitutes complex numbers and correct multiplier to rationalise the denominator seen or implied. See note below Could use $\times \frac{-3+2i}{-3+2i}$	M1
	(3+2i)(3-2i)=13	13 <u>obtained from</u> $(3+2i)(3-2i)$ Could be implied.	B1
	$\frac{z_2 z_3}{z_1} = \frac{12a - 5b}{13} + \frac{5a + 12b}{13}i$ or $\frac{1}{13}(12a - 5b) + \frac{i}{13}(5a + 12b)$ or $\frac{12}{13}a - \frac{5}{13}b + i\left(\frac{5}{13}a + \frac{12}{13}b\right)$ etc. Condone $\frac{(12a - 5b) + (5a + 12b)i}{12}$	d M1: Attempts to simplify the numerator and collects terms to obtain $pa + qb + rai + sbi$ with at least three of p , q , r and s non-zero. Requires previous M mark . A1: Correct answer in any form with a single "i". Correct bracketing where needed. Allow $x =, y =$	d M1 A1
	Note: The following marks are accessible if complex m	umbers are substituted in the wrong places:	(4)
(c)	z_2 as denominator max 1010, z_3 as d	Equates their x to $\frac{4}{12}$ and their y to $\frac{58}{12}$	
	$\frac{12a-5b}{13} = \frac{4}{13}, \frac{5a+12b}{13} = \frac{58}{13} \implies a =, b =$	to obtain 2 linear equations in both a and b and solves to obtain values for both a and b .	
	No need to check values but must be some wor " $\frac{12a-5b}{13} = \frac{4}{13}$, $\frac{5a+12b}{13} = \frac{58}{13}$ $12a-5b=4$, 5 Values can immediately follow if equations are p the same magni	The set of	M1
	a=2 and $b=4$	Correct values for <i>a</i> and <i>b</i> from	A1
	SC: Allow access to both marks for the exact $a = -\frac{242}{169}$ and $b =$ There are no marks in (c) if z_3 was used as the den	$\frac{716}{169} \text{ from using } w = \frac{z_1 z_3}{z_2} = \frac{12a + 5b}{13} + \frac{12b - 5a}{13} \text{ i}$ ominator in (b) [leads to a = b = 0]	(2)
(d)	$\arctan\left(\frac{\frac{58}{13}}{\frac{4}{13}}\right) \left\{=1.5019 \text{ or } 86.05^{\circ}\right\} \text{ or}$ $\arctan\left(\frac{\frac{4}{13}}{\frac{58}{13}}\right) \left\{=0.068856 \text{ or } 3.945^{\circ}\right\}$	Either correct arctan or tan ⁻¹ seen or implied by a correct 2sf value (awrt 1.5, 86, 0.069/0.068, 3.9) Could use equivalent trig. Note : tan $\frac{58}{4} = -2.634$ or 0.258	M1
	1.502	1.502 only (not awrt) Mark final answer if 1.502 is followed by e.g., $\frac{\pi}{2}$ -1.502 = 0.06880	A1
			(2) Total 10

Question Number	Scheme	Notes	Marks
7(a)	$f(x) = x^{\frac{3}{2}} + x - 3$ f(1) = 1+1-3 = -1 f(2) = $\sqrt{8} + 2 - 3 = 1.828$	Calculates values for both f(1) and f(2) with one correct. Allow e.g. $f(2) = 2\sqrt{2} - 1$ or awrt 2	M1
	f is continuous and changes sign , so root or α in [1, 2]. Correct interval [1, 2] if given. Sign change can be implied by "negative, positive", "f(1) < 0, f(2) > 0" or "f(1)f(2) < 0"	Correct values and sight of continuous, sign change and e.g., root/shown/QED/true/proven/√	A1
			(2)
(b)	$f(1.5) = 1.5^{\frac{3}{2}} + 1.5 - 3 \{=0.3371\}$	Obtains a <u>numerical expression or</u> <u>value</u> for f (1.5)	M1
Work may be	$f(1.25) = 1.25^{\frac{3}{2}} + 1.25 - 3 = \dots \{-0.3524\}$	Obtains a <u>value</u> for f(1.25). Requires previous M mark.	d M1
seen in a table	$\Rightarrow \operatorname{root}/\alpha / x/\operatorname{it's in/on/} \in [1.25, 1.5]$ or "in [1.25, 1.5]" or $1.25 \leq \operatorname{root}/\alpha / x \leq 1.5$	Correct values (awrt 0.3 and -0.3 or -0.4) and suitable conclusion. Allow "between $\frac{5}{4}$ and $\frac{3}{2}$ inclusive"	A1
	Do not accept [1.5, 1.25]. Just " $f(1.25) = \dots$ followed b interval bisection. There are no marks if it is	y $f(1.5) =$ so" is 100 if no evidence of a clear attempt at interpolation.	(3)
(c)(i)	$f'(x) = \frac{3}{2}x^{\frac{1}{2}} + 1$	Correct differentiation. Any correct equivalent e.g., $1.5\sqrt{x} + 1$	B1
(ii)	$\alpha \approx 1.375 - \frac{1.375^{\frac{3}{2}} + 1.375 - 3}{\frac{3}{2} \times 1.375^{\frac{1}{2}} + 1"} = \dots$ $\begin{cases} = 1.375 - \frac{-0.01266958256\dots}{2.75890591\dots} = 1.375 + 0.004592248875\dots} \\ = 1.379592249\dots \end{cases}$ $\begin{cases} exact values : \frac{11}{8} - \frac{11\sqrt{22} - 52}{32} \div \frac{8 + 3\sqrt{22}}{8} \end{cases}$	Correctly applies the Newton- Raphson formula with 1.375 & their f'(x) and obtains a value. Some working must be seen unless approx. root is seen correct to 6 d.p. accuracy (1.379592) or better. Allow "=1.375 - $\frac{f(1.375)}{f'(1.375)}$ " followed by value but formula must be fully substituted if just followed by value unless " x_0 " defined	M1
	awrt 1.380 or 1.38° (Ignore further iterations) NB Actual root is 1 379589808 A	nswer only is no marks	Al (3)
(d)	$e.g., \frac{\alpha - 1.25}{1.5 - \alpha} = \frac{0.3524575141}{0.3371173071}$ or e.g., $\frac{1.5 - \alpha}{0.337} = \frac{1.5 - 1.25}{0.337 + 0.352}$	Forms an equation in e.g., α with their f(1.25) and f(1.5) allowing for sign errors only but must be using differences. Allow use of "f(1.25)" and "f(1.5)"- could recover sign error	M1
	$\alpha = 1.377780737 = 1.378$	dM1: Solves ⇒value Requires previous M mark. A1: awrt 1.378	d M1 A1
	May use a formula. Allow work in, e.g., x for all	marks. No working required for 2nd M	(3)
Alt (Equation of line methods)	or $y - (-0.3524[$ or $0.3371]) = \frac{0.3371}{1}$ or $-0.3524[$ or $0.3371] = \frac{0.3371(-0)}{1.5-1.2}$ A full method to determine the equation of the allowing for sign errors only (but allow enhanced)	$\frac{(-0.3524)}{1.5-1.25}(x-1.25[or 1.5])$ $\frac{0.3524)}{25}(1.25[or 1.5])+c \Rightarrow c =$ e line using their f(1.25) and f(1.5) put errors finding a if $y = xyy + a yyz = 1$	M1
	(2750 2000)	d M1: Puts $v = 0$ and solves \rightarrow value	d M1 A1
	$\{\Rightarrow y = 2.758x - 3.800\}$ $\alpha = 1.377780737 = 1.378$	Requires previous M mark. A1: awrt 1.378	(3)
	May use a formula. Allow work in, e.g., x for all	marks. No working required for 2nd M	Total 11

Question	Scheme	Notes	Marks
8	$v^2 = 8x P(2p^2, 4p)$	$O\left(\frac{2}{2}, \frac{-4}{2}\right)$	
	$(-p, \cdot, p)$	$\mathcal{L}\left(p^{2}, p\right)$	
	Each part is marked separately. For example there unless that work is reference to the second	e is no credit in (c) for work seen in (b) rred to in (c)	
(a) Subs. both	$\left(\left(1\right)^{2} \right)$ 16 $\left(2\right)$ 16	Substitutes both coordinates of Q into the parabola equation, obtains 16	
x and y into	LHS or $y^2 \left\{ = \left(\frac{-4}{p}\right) \right\} = \frac{10}{p^2}$ RHS or $8x \left\{ = 8 \times \frac{2}{p^2} \right\} = \frac{10}{p^2}$	e.g., $\frac{1}{p^2}$ twice and makes minimal	
$y^2 = 8x$	So Q lies on the parabola* $(-4)^2$ (2) 16 16	conclusion - e.g., shown/QED/true/proven/√	B1*
	Allow e.g., $\left(\frac{1}{p}\right) = 8 \left(\frac{2}{p^2}\right) \Rightarrow \frac{10}{p^2} = \frac{10}{p^2} \Rightarrow \text{true}$	Sight of just " $y^2 = 8x$ " is insufficient but allow " $y^2 = 8x$ "	
		$y_Q = 0 x_Q$	(1)
Alt Subs. <i>x</i> or	$x = \frac{2}{3} \Rightarrow y^2 = 8 \times \frac{2}{3}$ or $\frac{16}{3} \Rightarrow y = \frac{-4}{3}$ or $\pm \frac{4}{3}$	Substitutes one coordinate of Q into the parabola equation to correctly find the other coordinate and makes	
y to find y or x	$p^{2} \qquad p^{2} \qquad p^{2} \qquad p^{2} \qquad p \qquad p \qquad p$ or $y = \frac{-4}{p} \Longrightarrow \frac{16}{p^{2}} = 8x \Longrightarrow x = \frac{2}{p^{2}}$	minimal conclusion - e.g., - e.g., shown/QED/true/proven/ \checkmark Sight of just" $y^2 = 8x$ " is insufficient	B1*
	So Q lies on the parabola*	but allow " $y_Q^2 = 8x_Q$ "	
9(1-)			(1)
ð(D)	Focus is $(2, 0)$ or $x = 2, y = 0$ Could be seen on a diagram	Condone (0, 2) if $x = 2$, $y = 0$ used but award final A0	B1
	gradient of $PQ = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}}$ or $\frac{-\frac{4}{p} - 4p}{\frac{2}{p^2} - 2p^2}$ $\int_{\mathbb{R}} = \frac{4p^3 + 4p}{p^3 + 4p} = \frac{2p^3 + 2p}{p^2} = \frac{2p(p^2 + 1)}{p^2} = \frac{2p}{p^2}$	Attempts the gradient of PQ condoning one term of incorrect sign. Allow this mark is they subsequently attempt to convert it to a normal gradient. Note that <i>m</i> may be obtained from	M1
	$\begin{bmatrix} 2p^4-2 & p^4-1 & p^4-1 & p^2-1 \end{bmatrix}$	$4p = 2mp^{2} + c, -\frac{4}{p} = \frac{2m}{p^{2}} + c \implies m = \dots$	
	e.g., $y-4p = \frac{4p+\frac{4}{p}}{2p^2-\frac{2}{p^2}}(x-2p^2)$	Allow this mark to be implied if their equation would have been correct but errors were made simplifying a correct gradient.	A1
	If $y = mx + c$ is used, one of the following express	ions oe for c must be reached following -4 2 (:)	
	correct gradient seen: $c = 4p - 2p^2$ (gradien	t) or $c = \frac{1}{p} - \frac{1}{p^2}$ (gradient)	
	Examples with fully simplified gradient (see over $x = 2 \Rightarrow y - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow y = \frac{4p - 4p^3}{p}$	the for a fuller list): $\frac{+4p^3 - 4p}{2-1} = 0$	
	or $y-4p = \frac{2p}{p^2-1}(2-2p^2) \Rightarrow y-4p = -4p^2$ $y=0 \Rightarrow -4p = \frac{2p}{p^2-1}(x-2p^2) \Rightarrow x = \frac{-4p^3-2}{p^2-1}(x-2p^2)$	$4p \Rightarrow y = 0$ $\frac{4p \Rightarrow y = 0}{2p} = 2$ So PQ passes through the focus*	A1*
	$(2,0) \Rightarrow -4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p$	=-4p	

	Substitutes $x = 2$ and shows $y = 0$ or vice versa or substitutes both values and shows that		
	the equation is true. Must have minimal conclusion e.g., shown/QED/true/proven/ \checkmark and		
	no incorrect work. Condone no conclusion if the mark in (a) was withheld for this reason		
	only. The examples indicate the minimum level of algebra acceptable. With the		
	exception of using (2, 0) with a fully simplified gradient, <u>look for substitution into the</u>		
	line followed by a further step which shows an e	expression that clearly leads to 0, 2 or	
	<u>e.g.</u> , $-4p$ or "1=1" followed by	a minimal conclusion	
	Work in " <i>a</i> " can only access the accuracy	marks when $a = 2$ is substituted	(4)
Alt 1	Focus is (2, 0) or $r = 2$, $v = 0$	Correct focus seen or used.	
	Could be seen on a diagram	Condone $(0, 2)$ if $x = 2$, $y = 0$ used	B1
Grad PF =		but award final A0	
Grad QF	gradient $PF = \frac{4p}{1000}$ or $\frac{-4p}{1000}$	M1: Obtains expressions for both	
	$2p^2-2$ $2-2p^2$	gradients condoning one term of	
	$\frac{4}{2}$ $\frac{4}{2}$	incorrect sign in either or both	M1
	and gradient $QF = p$ or p	expressions	A1
	$2-\frac{2}{2}$ or $\frac{2}{2}-2$	A1: Both correct expressions oe	
	p^2 p^2 p^2	TTT: Both contect expressions of	
		Shows that the gradients are the same	
	Grad $QF = \frac{4p}{1}$ = Grad PF	plus minimal conclusion e.g.,	
	\sim $2p^2-2$	shown/QED/true/proven/√ with no	A1*
	So PQ passes through the focus*	incorrect work. Condone no	
		conclusion if penalised in (a).	
	Note: A variation is to show grad <i>PF</i> or gra	ad $QF = \operatorname{grad} PQ - \operatorname{marked} \operatorname{as} \operatorname{Alt}$	(4)
	Alt 2 Follows (simila	r triangles)	
8(b)	<u>Examples</u> of minimum amount of algebra requir	ed with different expressions for grad	ient:
	$\int n + d$	4	
	4 <i>p</i> +-	\overline{p} (2^{2})	
	y-4p =	$\frac{1}{2}(x-2p^2)$	
$2p^2 - \frac{2}{2}$			
		p ²	
	4 n + 4	$\mathbf{e}_{\mathbf{n}} + 8 \mathbf{e}_{\mathbf{n}}^3 \mathbf{e}_{\mathbf{n}} + \mathbf{e}_{\mathbf{n}}^3 8$	
	+p+-p	p = p = p + p + p = p	0
$x = 2, y = \dots$	$x = 2 \Rightarrow y - 4p = \frac{1}{2}(2 - 2p^2)$	$\Rightarrow y = \frac{1}{2} = \frac{1}{2}$	= 0
	$2p^2 - \frac{-}{n^2}$	$2p^2 - \frac{-}{n^2}$	
	<i>p</i>	<u> </u>	
	$4 p + \frac{4}{2}$	$-8p^{3} + \frac{8}{2} + 8p^{3} + 8p$	
y=0, r=	$y=0 \rightarrow -4n = -\frac{p}{p}(x-2n)$	p^2 $\rightarrow r = \frac{p}{p} = -2$	
y = 0, x =	$y = 0 \implies -4p = \frac{2}{2m^2} + \frac{2}{2} (x - 2p)$	$(-2) \rightarrow x =$	
	$2p - \frac{1}{p^2}$	4p + -p	
	r	8	
	4p + -	$8p + \frac{6}{2} - 8p^3 - 8p$	
$(2,0) \Rightarrow$	$(2,0) \Rightarrow -4p = \frac{p}{p}(2-2p^2) \Rightarrow$	$-4p = \frac{p}{2} \Rightarrow -4p = -4p$	p
	$2p^2 - \frac{2}{2}$	$2n^2 - \frac{2}{2}$	1
	$\frac{-p}{p^2}$	p^2	
	$4 n^3 + 4$	1n	
	$y - 4p = \frac{-p}{2}$	$\frac{p}{2}(x-2p^2)$	
	$2p^{2}$	2 (-)	
	$4p^3 + 4p(z - z)$	$8p^3 + 8p - 8p^5 - 8p^3 + 8p^5 - 8p^3 - 8p^5 - 8p$	р
	$x = 2 \Longrightarrow y - 4p = \frac{r}{2p^4} \left(2 - 2p^2\right) \Longrightarrow$	$y = \frac{1}{2} $	= 0
$x = 2, y = \dots$	2p-2	2p - 2	
	or $y = 4p^3 + 4p(2 - 2p^2)$	$\rightarrow v = -4p^3 - 4p + 4p^3 + 4p = 0$	
	$y^{-4}p^{-}\frac{2p^4-2}{2p^4-2}(2-2p^4)$	$\rightarrow y - \frac{p^2 + 1}{p^2 + 1} \equiv 0$	
	-r -	$\frac{r}{2} = \frac{1}{2}$	
y = 0, x =	$y = 0 \Longrightarrow -4p = \frac{4p^2 + 4p}{2} (x - 2p^2)$	$(x^2) \Rightarrow x = \frac{-8p^2 + 8p + 8p^2 + 8p^2}{2} = 2$	
5 - 7	$2p^4 - 2 \sqrt{x^2 - 2p}$	$4p^{3}+4p$	

$$(2.0) \Rightarrow (2.0) \Rightarrow -4p = \frac{4p^3 + 4p}{2p^4 - 2} (2 - 2p^2) \Rightarrow -4p = \frac{8p^3 + 8p - 8p^5 - 8p^3}{2p^4 - 2} \Rightarrow -4p = -4p$$

$$y - 4p = \frac{2p}{p^2 - 1} (x - 2p^2)$$

$$x = 2 \Rightarrow y - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow y = \frac{4p - 4p^3 + 4p^3 - 4p}{p^2 - 1} = 0$$
or $y - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow y - 4p = -4p \Rightarrow y = 0$

$$y = 0, x = \dots$$

$$y = 0 \Rightarrow -4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow x = \frac{-4p^3 + 4p^3 - 4p}{2p} = 2$$

$$(2, 0) \Rightarrow (2, 0) \Rightarrow -4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p$$
Note that this not an exhaustive list (for example there are all the corresponding $y = mx + c$ approaches or those using Q) and the precise choice of algebra will vary videly but with the exception of the last example above this much requires substitution into the line followed by a further stress which shows an exceptosion that clearly leads to 0 .
$$2 \text{ or } c_{a,-4p} \text{ or } n^{-1} \text{ followed by a minima conclusion (unless B0 was given in (a) for that reason).}$$
8(b) cont.

$$y^2 = 8x - P(2p^2, 4p) \quad Q\left(\frac{2}{p^2}, -\frac{4}{p}\right) \times \left(2p^2, \frac{2}{p^2}\right)$$
M1: Obtains expression for two ratios conduning on term of incorrect sign in either or both expressions. For two ratios conclusion $(\frac{x}{p} + \frac{x}{p}, \frac{2p}{p^2 + 1} = \frac{2p}{p^2})$
8 cont.

$$\frac{x}{p} = \sqrt{\frac{4}{p} + \frac{p}{p}} \frac{QX}{QY} = \frac{2-\frac{2}{p^2}}{2p^2 - 2p^2}$$
M1: Obtains expression for two ratios conclusion $(\frac{x}{p} + \frac{x}{p}) = \frac{2p}{p^2}$
M1: Obtains expressions for two ratios conclusion $(\frac{x}{p} + \frac{x}{p}) = \frac{2p}{p^2}$
(c) $\frac{x}{p^2 + \frac{x}{p}} = \frac{2p}{p^2 + 1} = \frac{QX}{QX}$

$$\frac{x}{p^2 - 2p^2} = 8x - P(2p^2, 4p) \quad Q\left(\frac{2}{p^2}, -\frac{4}{p}\right)$$
(f) $\frac{y}{p} = \sqrt{8x^2} \rightarrow \frac{4p}{q} = \frac{4}{p} \frac{2}{q} + \frac{2}{q} \frac{2}{q} = \frac{2}{p^2}$

$$\frac{x}{q} = \frac{2p}{q} = \frac{2p}{q}$$
(f) $\frac{x}{q} = \frac{2p}{q} = \frac{2p}{q} = \frac{2p}{q}$
(g) $\frac{2p}{q} = \frac{2p}{q} = \frac{2p}{q}$
(g) $\frac{2p}$

$$\begin{aligned} & \begin{array}{l} & \begin{array}{l} \text{M1: Correct straight line method for either point with their tangent gradient in terms of p (but allow if r^{arr} list present) coordinates correctly placed. If $y = mx + c$ is used must reach $c = ...$ following correctly placed coordinates $(1 + arr)^{2}$ list present) coordinates correctly placed. If $y = mx + c$ is used must reach $c = ...$ following correctly placed coordinates A1: Any correct unsimplified equation for either tangent tangent tangent tangent tangent $(1 + arr)^{2}$ p (but allow if r^{arr} list present) coordinates A1: Any correct unsimplified equation for either tangent tangent$$

Question Number	Scheme	Notes	Marks	
9	$f(n) = 4^n + 6n - 10 \qquad n$	$v \in \mathbb{Z}$ $n \geqslant 2$		
Att Using e.g., : Alternative e divisibility, e	General guidance : Apply the way that best fits the overall approach. Condone work in e.g., <i>n</i> instead of <i>k</i> . Attempts with no induction e.g., not using $f(k)$ in an equation with $f(k+1)$ score a max of 11000. Using e.g., $f(k+2) - f(k+1)$ requires a clear indication of assuming $f(k+1)$ is true to access the last three marks. Alternative explanations are unlikely to access the last three marks unless there is a fully convincing justification of divisibility a $g = f(k+1) - f(k) - 2y A^k + 6$ followed by "Singe 2y A^k is a multiple of both 2 and 4 and hence 12			
$3 \times 4^{k} +$ <u>Allow use</u> I Final A1 : The a conclusion	6 is divisible by 18" is not a sound argument. Attent expressions must be complete methods of -18 but if any different multiples of 18 are involv of/divisible by (but not "factor of") B1 : Any correct numerical expression that is not e.g., $16 + 12 - 10$, $28 - 10$, $4^2 + 2$. Starting with gnore an extra evaluation of f (1) but a comment on here must be evidence that true for $n = k \implies$ true for or a parrative or via both. So if e.g., "Assume true	npts that involve further induction on dist to access the last 3 marks. <u>ved e.g., 36, the first A1 requires "36 is a</u> <u>) 18" oe for each case</u> just "18" is sufficient for this mark n e.g., f(3) scores a max of 01110. f (1)'s divisibility is final A0 since $n \ge 2$ or $n = k + 1$ but it could be minimal and b for $n = k$. " is seen in the work follow:	ferent <u>multiple</u> e scored in	
a conclusion	for $n = k + 1$ " in a conclusion	this is sufficient. $\mathbb{R} = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$	sa by true	
Way 1	Condone for all $n \in \mathbb{Z}^n$, all $n \in \mathbb{Z}^n > 2^n$, f f(2) = $4^2 + 6 \times 2 - 10 = 18$	all $\mathbb{Z} > (\text{or} \ge) 2^n$ but not $n \in \mathbb{R}$	B1	
f(k+1)-f(k)	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1	
	$f(k+1) - f(k) = 4^{k+1} + 6(k+1) - 10 - (4^k + 6k - 10)$	$\frac{1}{2} \int \frac{d^2 f(t)}{dt} dt = \frac{1}{2} \int \frac{d^2 f(t)}{dt} dt $	1411	
	$= 4^{k+1} - 4^{k} + 6 = 3 \times 4^{k} + 6$ $= 3(4^{k} + 6k - 10) - 18k + 36$	Attempts $\Gamma(k+1) - \Gamma(k)$, uses $4^{k+1} = 4 \times 4^k$ & obtains $pf(k) + g(k)$ with $g(k)$ linear (allow constant $\neq 0$)	M1	
	f(k+1) = 4f(k) + 18(2-k) f(k) may be written in full	Correct factorised expression Allow 4f (k) +18×2–18×k If f(k + 1) is not made the subject then e.g., "true for f(k + 1) – f(k)" is also required	A1	
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1	
Way 2	$f(2) = 4^2 + 6 \times 2 = 10 - 18$		(5)	
$f(k+1) = \dots$	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Obtains $f(2) = 18$ with substitution Attempts $f(k+1)$	M1	
	$= 4 \times 4^{k} + 6k - 4$ = 4(4 ^k + 6k - 10) - 18k + 36	Uses $4^{k+1} = 4 \times 4^k$ & obtains pf(k) + g(k) with $g(k)$ linear (allow constant $\neq 0$)	M1	
	= 4f(k) + 18(2-k) f(k) may be written in full	Correct factorised expression Allow 4f (k) +18×2-18×k	A1	
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1	
			(5)	

Question Number	Scheme	Notes	Marks
9 cont.	$f(n) = 4^n + 6n - 10 \qquad n$	$n \in \mathbb{Z}$ $n \ge 2$	
Way 3 $f(k+1) - mf(k)$	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1
	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1
	$f(k+1) - mf(k) = 4^{k+1} + 6(k+1) - 10 - m(4^{k} + 6k - 10)$ = $(4 - m)4^{k} + (6 - 6m)k - 4 + 10m$ e.g. $m = -14 \Rightarrow 18 \times 4^{k} + 90k - 144$ e.g. $m = 4 \Rightarrow -18k + 36$	Attempts $f(k+1) - mf(k)$ and uses a value of <i>m</i> to obtain $c \times 4^k +$ where <i>c</i> is a multiple of their 18 or uses $m = 4$	M1
	e.g., $f(k+1) = -14f(k) + 18(4^{k} + 5k - 8)$ f(k+1) = 4f(k) + 18(2-k) f(k) may be written in full	A correct factorised expression Allow $-14f(k)+18 \times 4^{k}+18 \times 5k-18 \times 8$ If $f(k + 1)$ is not made the subject then e.g., "true for $f(k + 1) - mf(k)$ " is also required	A1
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1
			(5)
$\begin{array}{c} \textbf{Way 4} \\ f(k) = 18M \end{array}$	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1
$1(\kappa) - 10M$	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1
	$f(k) = 18M$, $f(k+1) = 4 \times 4^{k} + 6k - 4$ = $4 \times 18M - 18k + 36$	Sets $f(k) = 18M$, uses $4^{k+1} = 4 \times 4^k$ & obtains $pf(k) + g(k)$ with $g(k)$ linear (allow constant $\neq 0$)	M1
	f(k+1) = 18(4M+2-k)	A correct factorised expression Allow $18 \times 4M + 18 \times 2 - 18 \times k$	A1
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1
			(5)
		PAPER T	OTAL: 75

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom